FIFTH EDITION
Diagnostic Medical Parasitology
This page intentionally left blank
FIFTH EDITION

Diagnostic Medical Parasitology

Lynne Shore Garcia, M.S., MT, CLS, F(AAM)
LSG & Associates, Santa Monica, California

ASM PRESS
WASHINGTON, D.C.
As with the first four editions, I dedicate this book to Marietta Voge, a truly rare individual who was widely recognized as one of the world’s leading parasitologists. During her years as a diagnostic and research parasitologist at the University of California, Los Angeles, she touched the lives of many students and staff in a very special way. She was always more than willing to share her expertise with all who asked and volunteered this help over the years whenever contacted. She was always willing to donate a considerable amount of her personal time as a volunteer for various medical projects throughout the world.

She was a very special individual to work with, always interested in the person as well as the problem at hand. Her areas of teaching extended far beyond science. Whatever subject she was interested in received her total enthusiasm and dedication, and she had an exceptional ability to deal with detailed work. Her sense of fairness and professional integrity were remarkable; these ideals were shared with all who came in contact with her.

Her contributions to the field of diagnostic parasitology were numerous and included many classes, seminars, papers, and textbooks. The importance of working with Dr. Voge is hard to put into words. She was unique in her ability to allow a student to grow, both scientifically and personally. She could guide without constraints, teach without formal lectures, counsel without being judgmental, challenge without being unrealistic, tease without being cruel, and always be supportive regardless of the situation. She expected much from her students and employees and yet always gave considerably more than she received.

Scientific information gained from our association with her was invaluable; however, her impact on our lives was considerably more than scientific. She was always available for consultations and just to talk. She left all of us with a sense of having personally matured as a result of knowing and working with her over the years. She is missed by all of us, and yet her contributions in terms of teaching, consultations, volunteer work, professionalism, and friendship will remain with us forever.

I also dedicate this book to John Lawrence. He was an extraordinary individual, and without his original encouragement and assistance, the first edition of the book would never have been written.
This page intentionally left blank
Contents

Preface xv
Acknowledgments xix

PART I
Clinically Important Human Parasites 1

1 Philosophy and Approach to Diagnostic Parasitology 3

2 Intestinal Protozoa: Amebas 6
Entamoeba histolytica 6
Entamoeba dispar 19
Entamoeba moshkovskii 21
Entamoeba hartmanni 21
Entamoeba coli 22
Entamoeba polecki 23
Entamoeba gingivalis 24
Endolimax nana 25
Iodamoeba bütschlii 27
Blastocystis hominis 27

3 Intestinal Protozoa: Flagellates and Ciliates 33
Giardia lamblia 33
Dientamoeba fragilis 47
Pentatrichomonas hominis (Trichomonas hominis) 49
Trichomonas tenax 50
Chilomastix mesnili 50
Enteromonas hominis 51
Retortamonas intestinalis 51
Balantidium coli 51

4 Intestinal Protozoa (Coccidia and Microsporidia) and Algae 57
Coccidia 57
Cryptosporidium spp. 57
Cyclospora cayetanensis 73
Isospora (Cystoisospora) belli 80
Sarcocystis spp. 83
Microsporidia 87
Algae (Prototheca) 98

5 Free-Living Amebas 102
Naegleria fowleri 104
Acanthamoeba spp. 109
Balamuthia mandrillaris 118
Sappinia diploidea 121

6 Protozoa from Other Body Sites 123
Trichomonas vaginalis 123
Toxoplasma gondii 130

7 Malaria and Babesiosis 142
Malaria 142
Babesiosis 180

8 Leishmaniasis 190
Old World leishmaniasis: cutaneous leishmaniasis 191
Old World leishmaniasis: visceral leishmaniasis 198
New World leishmaniasis: cutaneous leishmaniasis 205
New World leishmaniasis: visceral leishmaniasis 212

9 Trypanosomiasis 218
African trypanosomiasis 218
Trypanosoma brucei gambiense 218
Trypanosoma brucei rhodesiense 228
American trypanosomiasis 232
Trypanosoma cruzi 232
Trypanosoma rangeli 243
10 Intestinal Nematodes 249
Ascaris lumbricoides 250
Enterobius vermicularis 258
Trichuris trichiura 261
Capillaria philippinensis 264
Hookworms (Ancylostoma duodenale and Necator americanus) 266
Trichostrongylus spp. 270
Strongyloides spp. 271

11 Tissue Nematodes 283
Trichinella spp. 283
Baylisascaris procyonis 294
Lagochilascaris minor 298
Toxocara canis and T. cati (visceral larva migrans and ocular larva migrans) 298
Ancylostoma braziliense and A. caninum (cutaneous larva migrans) 302
Human eosinophilic enteritis 303
Dracunculus medinensis 304
Angiostrongylus (Parasstrongylus) cantonensis (cerebral angiostrongyliasis) 307
Angiostrongylus (Parasstrongylus) costaricensis (abdominal angiostrongyliasis) 309
Gnathostoma spinigerum 310
Gnathostoma doloresi, G. nipponicum, G. hispidum, and G. binucleatum 312
Anisakis simplex, A. physeteris, Pseudoterranova decipiens, Contracaecum osculatum, Hysterobylacium aduncum, and Porrocaecum reticulatum (larval nematodes acquired from saltwater fish) 312
Capillaria hepatica 315
Thelazia spp. 315

12 Filarial Nematodes 319
Wuchereria bancrofti 321
Brugia malayi 332
Brugia timori 333
Zoonotic Brugia infections (American brugian filariasis) 334
Tropical pulmonary eosinophilia 335
Loa loa 335
Mansonella ozzardi 338
Mansonella perstans 339
Mansonella streptocerca 340
Onchocerca volvulus 341
Dirofilaria Dirofilaria and Dirofilaria Nochtiella spp. 348

13 Intestinal Cestodes 357
Diphyllolothrium latum 357
Taenia solium 362
Taenia saginata 371
Taenia saginata asiatica (Asian Taenia or Taenia asiatica) 373
Hymenolepis nana 374
Hymenolepis diminuta 376
Dipylidium caninum 377

14 Tissue Cestodes: Larval Forms 381
Echinococcus granulosus (cystic disease, hydatid disease) 381
Echinococcus multilocularis (alveolar disease, hydatid disease) 393
Echinococcus oligarthrus and Echinococcus vogeli (polycystic hydatid disease) 399
Taenia (Multiceps) spp. (Taenia multiceps, Taenia serialis) (coenurosis) 402
Spirometra mansonioides and Diphyllolothrium spp. (sparganosis) 402
NOTE: Taenia solium (cysticercosis) is discussed in chapter 13.

15 Intestinal Trematodes 411
Fasciolopsis buski 411
Echinostoma ilocanum 416
Heterophyes heterophyes 417
Metagonimus yokogawai 419
Gastrodiscoides hominis 420

16 Liver and Lung Trematodes 423
Liver flukes 423
Clonorchis sinensis 423
Opisthorchis viverrini 429
Opisthorchis felineus 431
Fasciola hepatica 432
Fasciola gigantica 435
Less common liver flukes 436
Dicrocoelium dendriticum, Dicrocoelium hospes, and Eurytrema pancreaticum 436
Lung flukes 438
Paragonimus spp. 438

17 Blood Trematodes: Schistosomes 445
Schistosoma mansoni 446
Schistosoma japonicum 458
Schistosoma mekongi 463
Schistosoma haematobium 466
Schistosoma intercalatum 472
18 Unusual Parasitic Infections 478
 Aquatic Protist 478
 Rhinosporidium seeberi 478
 Protozoa 482
 Myxozoan parasites 482
 Nematodes 483
 Oesophagostomum spp. 483
 Eustrongylides spp. 485
 Mermis nigrescens 486
 Micronema deletrix 487
 Dioctophyma renale 487
 Ternidens deminutus 488
 Mammomonogamus laryngeus (Syngamus laryngeus) 488
 Ascaris suum 489
 Gongylonema pulchrum 489
 Haycocknema perplexum 490
 Cestodes 490
 Diplogonoporus spp. 490
 Bertiella studeri 491
 Inermicapser madagascariensis 491
 Raillietina celebensis 491
 Mesocestoides spp. 492
 Taenia crassiceps 492
 Trematodes 493
 Alaria americana 493
 Plagiorchis spp. 493
 Neodiplostomum seoulense 494
 Spelotrema brevicaca 494
 Brachylaima sp. 494
 Troglotrema salmincola 494
 Stellantchasmus falcatus 494
 Phaneroporus hortaei and Prosthodendrium molenkempi 495
 Phaneroporus spinicirrus 495
 Haplorchis taichu 496
 Gymnophalloides seoi 496
 Metorchis conjunctus (North American liver fluke) 497
 Schistosoma mattheei 498
 Philophthalmus lacrinosus 498
 Achillurbainia spp. 499
 Pentastomids 499
 Armillifer spp., Linguatula serrata, and Sebekia spp. 499
 Acanthocephalans 500
 Macracanthorhynchus bireudinaceus and Moniliformis moniliformis 500

19 Parasitic Infections in the Compromised Host 506
 Entamoeba histolytica 508
 Free-living amebae 518

Giardia lamblia 522
Toxoplasma gondii 523
Cryptosporidium spp. 524
Cyclospora cayetanensis 528
Isospora (Cystoisospora) bellii 530
Sarcocystis spp. 531
Microsporidia 532
Leishmania spp. 537
Strongyloides stercoralis 540
Crusted (Norwegian) scabies 540

20 Nosocomial and Laboratory-Acquired Infections 549
 Nosocomial infections 549
 Cryptosporidium spp. 550
 Giardia lamblia 553
 Entamoeba histolytica 554
 Microsporidia 555
 Isospora (Cystoisospora) bellii 555
 Hymenolepis nana 555
 Taenia solium 555
 Nosocomial blood and tissue infections 556
 Plasmodium spp. 556
 Babesia spp. 556
 Trypanosoma brucei gambiense and T. brucei rhodesiense 556
 Trypanosoma cruzi 556
 Leishmania donovani 557
 Toxoplasmagondii 557
 Nosocomial infections with ectoparasites 557
 Pediculus spp. and Pthirius pubis 557
 Sarcoptes scabiei 557
 Myiasis 557
 Nosocomial infections in the pediatric patient 558
 Cryptosporidium spp. 558
 Giardia lamblia 558
 Pediculus humanus capit 558
 Sarcoptes scabiei 558
 Nosocomial infections in the compromised patient 558
 Laboratory infections 560
 Intestinal protozoa 560
 Free-living amebae 560
 Plasmodium spp. 560
 Trypanosoma brucei gambiense and T. brucei rhodesiense 560
 Trypanosoma cruzi 562
 Leishmania spp. 562
 Toxoplasma gondii 562
 Specimen handling 563
 Summary 563
21 Immunology of Parasitic Infections 567
 Amebiasis 570
 Giardiasis 575
 Toxoplasmosis 577
 African trypanosomiasis 579
 American trypanosomiasis 580
 Malaria 582
 Summary 586

22 Antibody and Antigen Detection in Parasitic Infections 592
 Protozoal infections 594
 Amebiasis 594
 Babesiosis 597
 Chagas’ disease 597
 Cryptosporidiosis 598
 Cyclosporiasis 598
 Giardiasis 598
 Leishmaniasis 598
 Malaria 600
 Toxoplasmosis 601
 Trichomoniasis 603
 Helminth infections 604
 Cysticercosis 604
 Hydatid disease 605
 Fascioliasis 605
 Filariasis 606
 Paragonimiasis 607
 Schistosomiasis 608
 Strongyloidiasis 609
 Toxocariasis 610
 Trichinellosis 610
 Intradermal tests 611
 Casoni test 611
 Montenegro test 611

23 Histologic Identification of Parasites 616

24 Medically Important Arthropods 670
 Arthropods and their relationship to disease 670
 Biological vectors of microorganisms 670
 Bites and envenomation 671
 Tissue invasion 676
 Entomophobia and delusory parasitosis 676
 Class Insecta (insects) 678
 Order Diptera (flies, mosquitoes, and midges) 679
 Myiases 683
 Order Hemiptera (true bugs) 690
 Order Coleoptera (beetles) 692
 Order Siphonaptera (fleas) (Ctenocephalides spp., Xenopsylla cheopis, Pulex irritans [human flea], Tunga penetrans, Nosopsyllus fasciatus, Echidnophaga gallinacea, and “sand fleas”) 693
 Order Anoplura (sucking lice) 694
 Order Mallophaga (biting and chewing lice) 696
 Order Hymenoptera (bees, wasps, and ants) 696
 Order Blattaria (cockroaches) 698
 Class Arachnida (ticks, mites, spiders, and scorpions) 699
 Subclass Acari (ticks, mites, and chiggers) 699
 Subclass Araneae (spiders) 708
 Subclass Scorpiones (scorpions) 710
 Other arthropods 711
 Class Chilopoda (centipedes) 711
 Class Diplopoda (millipedes) 712
 Class Crustacea (copepods, crabs, crayfish, etc.) 712
 Control of arthropods of medical importance 712
 Physical control 712
 Biological control 712
 Chemical control 715

25 Treatment of Parasitic Infections 718

PART II
Diagnostic Procedures 759

26 Collection, Preservation, and Shipment of Fecal Specimens 761
 Safety 761
 Fresh-specimen collection 762
 Collection of the specimen 762
 Number of specimens to be collected (standard recommendation) 762
 Number of specimens to be collected (pros and cons of various options) 763
 Collection times 764
 Specimen type, specimen stability, and need for preservation 764
 Preservation of specimens 768
 Preservatives 768
 Formalin 768
 MIF 769
 SAF 771
 Schaudinn’s fluid 772
 PVA 772
 Modified PVA 773
 Single-vial collection systems (other than SAF) 773
 Use of fixatives 774
 Quality control for stool fixatives 774
 Procedure notes for use of preservatives 775
 Procedure limitations for use of preservatives 775
 Shipment of diagnostic specimens, biological products, etiologic agents, or infectious substances 775

27 Macroscopic and Microscopic Examination of Fecal Specimens 782
 Macroscopic examination 782
Microscopic examination (ova and parasite examination) 783
 Direct wet smear 783
 Concentration (sedimentation and flotation) 788
 Formalin-ethyl acetate sedimentation concentration 789
 Iodine-trichrome stain for sediment 792
 Zinc sulfate flotation concentration 794
 Commercial fecal concentration devices 796
 Automated workstation for the microscopic analysis of fecal concentrates 797
 Permanent stained smear 797
 Preparation of material for staining 798
 Trichrome stain 802
 Iron hematoxylin stain 807
 Modified iron hematoxylin stain (incorporating the carbol fuchsin step) 811
 Polychrome IV stain 812
 Chlorazol black E stain 813
 Specialized stains for coccidia (Cryptosporidium, Isospora, and Cyclospora species) and the microsporidia 813
 Modified Kinyoun's acid-fast stain (cold method) 813
 Modified Ziehl-Neelsen acid-fast stain (hot method) 816
 Carbol fuchsin negative stain for Cryptosporidium (from W. L. Current) 819
 Rapid safranin method for Cryptosporidium 819
 Rapid safranin method for Cyclospora, using a microwave oven 819
 Auramine O stain for coccidia (from Thomas Häscheid) 819
 Modified trichrome stain for the microsporidia (Weber—green) 821
 Modified trichrome stain for the microsporidia (Ryan—blue) 823
 Modified trichrome stain for the microsporidia (Kokoskin—hot method) 825
 Acid-fast trichrome stain for Cryptosporidium and the microsporidia 826

28 Additional Techniques for Stool Examination 831
 Culture of larval-stage nematodes 831
 Harada-Mori filter paper strip culture 832
 Filter paper/slant culture technique (petri dish) 833
 Charcoal culture 834
 Baermann technique 835
 Agar plate culture for Strongyloides stercoralis 837
 Egg studies 840
 Estimation of worm burdens 840
 Hatching of schistosome eggs 842
 Search for tapeworm scolex 844
 Qualitative test for fecal fat 845
 Quantitation of reducing substances (Clinitest) 847

29 Examination of Other Specimens from the Intestinal Tract and the Urogenital System 850
 Examination for pinworm 850
 Cellulose tape preparations 851
 Anal swabs 851
 Sigmoidoscopy material 852
 Direct saline mount 853
 Permanent stained slide 853
 Duodenal contents 854
 Duodenal drainage 854
 Duodenal capsule technique (Entero-Test) 854
 Urogenital specimens 855
 Trichomoniasis 855
 Filariasis 856
 Schistosomiasis 856

30 Sputum, Aspirates, and Biopsy Material 859
 Expectorated sputum 859
 Induced sputum 861
 Aspirates 868
 Lungs and liver 868
 Lymph nodes, spleen, liver, bone marrow, spinal fluid, eyes, and nasopharynx 869
 Cutaneous ulcer 871
 Biopsy material 871
 Skin 876
 Lymph nodes 876
 Muscle 876
 Rectum and bladder 877

31 Procedures for Detecting Blood Parasites 881
 Preparation of thick and thin blood films 881
 Thick blood films 882
 Thin blood films 884
 Combination thick and thin blood films (on the same slide) 884
 Combination thick and thin blood films (can be stained as either) 884
 Buffy coat blood films 886
 Staining blood films 887
 Giemsa stain 888
 Wright’s stain 889
 General notes on staining procedures 891
 Proper examination of thin and thick blood films 891
 Thin blood films 891
 Thick blood films 893
 Determination of parasitemia 893
 Diagnosis of malaria: review of alternatives to conventional microscopy 894
 QBC microhematocrit centrifugation method 895
 ParaSight F test 896
 NOW malaria test 900
Flow anti-pLDH *Plasmodium* monoclonal antibodies 901
PCR 902
Automated blood cell analyzers 903
Diagnosis of leishmaniasis: review of alternatives to conventional microscopy 903
ICT for detection of anti-rK-39 antibodies 903
Concentration procedures 903
Cyto centrifugation technique 903
Knott concentration procedure 904
Membrane filtration technique 904
Gradient centrifugation technique 905
Triple-centrifugation method for trypanosomes 905
Special stain for microfilarial sheath 905
Delafield's hematoxylin 905

32 Parasite Recovery: Culture Methods, Animal Inoculation, and Xenodiagnosis 910
Culture methods 910
Intestinal protozoa 911
Pathogenic free-living amebae 917
Pathogenic flagellates 922
Flagellates of blood and tissue 926
Toxoplasma gondii 931
Plasmodium and *Babesia* spp. 931
Cryptosporidium spp. 932
Microsporida 932
Animal inoculation 932
Leishmania spp. 932
Trypanosoma spp. 933
Toxoplasma gondii 933
Xenodiagnosis 933

33 Fixation and Special Preparation of Fecal Parasite Specimens and Arthropods 936
Fixation of parasite specimens and arthropods 936
Protozoa 937
Solutions to induce relaxation in adult helminths 938
Nematodes 939
Trematodes 940
Cestodes 940
Helminth eggs and larvae 940
Arthropods 940
Mounting and staining of parasite specimens for examination 941
Nematodes 941
Trematodes 942
Cestodes 943
Mounting of arthropods for examination 944
Mites 944
Fleas and lice 944
Ticks 945
Miscellaneous arthropods 945

34 Artifacts That Can Be Confused with Parasitic Organisms 947
Protozoa 947
Amebae 947
Flagellates 949
Ciliates 949
Coccidia and microsporidia 949
Cryptosporidium spp. and *Cyclospora cayetanensis* 949
Isospora belli 950
Microsporida 951
Blood and body fluids 951
Malaria parasites and *Babesia* spp. 951
Leishmaniae and trypanosomes 951
Microfilariae 951
Body fluids: ciliated epithelial cells 953
Helminths 953
Adult worms and larvae 953
Eggs 954
Human cells 954
Polymorphonuclear leukocytes 956
Eosinophils 956
Macrophages 956
Lymphocytes 957
Red blood cells 957
Charcot-Leyden crystals 957
Nonhuman elements seen in feces (yeast cells) 957
Insect larvae 958
Spurious infections 958
Delusory parasitosis 959

35 Equipment, Supplies, Safety, and Quality System Recommendations for a Diagnostic Parasitology Laboratory: Factors Influencing Future Laboratory Practice 961
Equipment 961
Microscope 961
Centrifuge 965
Fume hood 965
Biological safety cabinet 965
Refrigerator-freezer 966
Supplies 966
Glassware 966
Miscellaneous supplies 967
ATCC quality control organisms 967
Safety: personnel and physical facilities 967
General precautions 967
Handwashing 968
Personal protective equipment (OSHA 2001 blood borne) 969
Handling specimens 970
Processing specimens 970
Spills 972
Disposal of contaminated materials 973
Standard precautions 974
Hepatitis exposure protocol 976
Dangerous properties of industrial materials 976
Current OSHA regulations for the use of formaldehyde 977
Latex allergy 978
Quality systems 979
Extent of services 979
Proficiency testing 979
In-house quality control 982
Patient outcome measures 986
Continuous quality improvement, total quality management, or 10-step and FOCUS-PDCA for performance improvement activities 987
CLIA ’88 inspection process 989
New quality guidelines 989
ISO guidelines 989
CLSI (NCCLS) model 990
Factors influencing future laboratory practice 990
Managed care 992
Financial considerations 993
Decentralized testing 993
Laboratory services 993
Technological trends 994
Clinical decision support 994
Personnel issues 995
Changing demographics 995
Emerging diseases 995

36 Medical Parasitology: Case Histories 998
Protozoal infections 998
Helminth infections 1007
Blood parasite infections 1016
Diagnostic methods 1024

APPENDIXES 1027

APPENDIX 1
Information Tables 1028
A1.1 Classification of human parasites 1028
A1.2 Distribution of selected parasitic infections in the Americas 1031
A1.3 Distribution of selected parasitic infections in Europe 1031
A1.4 Distribution of selected parasitic infections in Africa 1032
A1.5 Distribution of selected parasitic infections in Asia 1033
A1.6 Distribution of selected parasitic infections in Oceania 1033
A1.7 Cosmopolitan distribution of common parasitic infections (North America, Mexico, Central America, South America, Europe, Africa, Asia, and Oceania) 1034
A1.8 Body sites and specimen collection 1035
A1.9 Body sites and possible parasites recovered (trophozoites, cysts, oocysts, spores, adults, larvae, eggs, amastigotes, and trypomastigotes) 1036
A1.10 Body site, specimen and procedures, recommended methods, relevant parasites, and comments 1037
A1.11 Examination of tissue and body fluids 1042
A1.12 Key characteristics of protozoa of the intestinal tract and urogenital system 1044
A1.13 Key characteristics of tissue protozoa 1047
A1.14 Key characteristics of helminths 1049
A1.15 Key characteristics of parasites found in blood 1052
A1.16 Diagnostic laboratory report information that should be relayed to the physician 1054
A1.17 Pros and cons of stool specimen collection and testing options 1055
A1.18 Approaches to stool parasitology: test ordering 1057
A1.19 Pros and cons of ova and parasite examination options 1058
A1.20 Laboratory test reports: optional comments 1060
A1.21 Estimated prevalence of parasitic diseases worldwide 1061

APPENDIX 2
Flowcharts and Staining Tables for Diagnostic Procedures 1062
Flowcharts
A2.1 Procedure for processing fresh stool for the ova and parasite examination 1062
A2.2 Procedure for processing liquid specimens for the ova and parasite examination 1063
A2.3 Procedure for processing preserved stool for the ova and parasite examination by using the traditional two-vial collection kit 1064
A2.4 Procedure for processing sodium acetate-acetic acid-formalin (SAF)-preserved stool for the ova and parasite examination 1065
A2.5 Use of various fixatives and their recommended stains 1066
Tables
A2.1 Steps in the trichrome staining procedure (mercuric chloride-based PVA-preserved stool specimens) 1067
A2.2 Steps in the trichrome staining procedure (non-mercuric chloride-based PVA-preserved stool specimens) 1068
A2.3 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Spencer-Monroe method) 1069
A2.4 Steps in the iron hematoxylin staining procedure (mercuric chloride-based PVA-preserved stool specimens) (Tompkins-Miller method) 1070
A2.5 Steps in the iron hematoxylin staining procedure (incorporating the carbol fuchsin step) 1071
A2.6 Oil-mounted permanent stained smears (no Permount is used) 1072
A2.7 Tips on stool processing and staining 1073

APPENDIX 3
Common Problems in Parasite Identification 1074

Figures
A3.1–A3.25 Paired drawings of “look alikes” 1074
A3.26 Relative sizes of helminth eggs 1080

Table
A3.1 Adult nematodes and/or larvae found in stool specimens: size comparisons 1081

APPENDIX 4
Quality Control Recording Sheets 1082
A4.1 Diagnostic parasitology quality control (QC) (reagents) 1083
A4.2 Diagnostic parasitology quality control (QC) (reagents)—example for multiple reagents 1084
A4.3 Diagnostic parasitology quality control (QC) (culture)—example of a worksheet 1085
A4.4 Equipment maintenance 1086

APPENDIX 5
Commercial Supplies and Suppliers 1089

Tables
A5.1 Sources of commercial reagents and supplies 1090
A5.2 Addresses of suppliers listed in Table A5.1 1092
A5.3 Sources of available reagents for immunodetection of parasitic organisms or antigens 1094
A5.4 Addresses of suppliers listed in Table A5.3 1095
A5.5 Commercial suppliers of diagnostic parasitology products 1096
A5.6 Sources of parasitologic specimens 1099
A5.7 Sources of Kodachrome study slides (35 mm, 2 × 2) for rental 1100
A5.8 Sources of additional teaching materials, including case histories 1100

APPENDIX 6
Reference Sources 1101

APPENDIX 7
Color Plates of Diagnostic Stages of Human Parasites 1104

APPENDIX 8
“Late-Breaking” Published Information 1120

GLOSSARY 1151

INDEX 1165
During the past few years, the field of diagnostic medical parasitology has seen dramatic changes, including newly recognized parasites, emerging pathogens in new geographic areas, bioterrorism considerations and requirements, alternative techniques required by new regulatory requirements, reevaluation of diagnostic test options and ordering algorithms, continuing changes in the laboratory test menus, implementation of testing based on molecular techniques, reporting formats, coding and billing requirements, managed care relevancy, increased need for consultation and educational initiatives for clients, and an overall increased awareness of parasitic infections from a worldwide perspective. We have seen organisms like the microsporidia change from the status of “unusual parasitic infection” to being widely recognized as causing some of the most important infections in both immunocompetent and compromised patients. More sensitive diagnostic methods for organism detection in stool specimens are now commercially available for Entamoeba histolytica, Entamoeba histolytica/E. dispar, Giardia lamblia, Cryptosporidium parvum, and Trichomonas vaginalis. Reagents are actively being developed for other organisms such as Dientamoeba fragilis and the microsporidia. We have seen Cyclospora cayetanensis coccidia become well recognized as the cause of diarrhea in immunocompetent and immunocompromised humans. We continue to see new disease presentations in compromised patients; a good example is granulomatous amebic encephalitis caused by Acanthamoeba spp., Sappinia diploidea, and Balamuthia mandrillaris. With the expansion of transplantation options, many parasites are potential threats to patients who are undergoing immunosuppression, and they must be considered within the context of this patient group. Transfusion-associated transmission of potential parasitic pathogens continues to be problematic. Transfusion in general is becoming more widely recognized as a source of infection, and donors are also more likely to come from many areas of the world where parasitic infections are endemic.

With expanding regulatory requirements related to the disposal of chemicals, laboratories are continuing to review the use of mercury compounds as specimen fixatives and learning to become familiar with organism morphology when using substitute compounds. Permanent staining of fecal smears confirms that none of the substitute fixatives provide results of the same quality found with the use of mercuric chloride-based fixatives. However, the key issue is whether the intestinal parasites can be identified using these alternative fixa-
tives, not how “perfect” they look. Many fixative options are now available, including single-vial collection systems, some of which are coupled with their own stains. Requirements also mandate that any laboratory using formalin must have formalin vapor monitored as both an 8 h time weighted average and 15 min readings. Most laboratories are now familiar with the regulations on protection of health care workers from blood and other body fluids and have implemented specific changes that are no longer optional. Although laboratories were already using many of the safety recommendations, these regulations delineate in detail what must be done and documented. Regulatory information based on new shipping requirements is also included.

On the basis of excellent suggestions and comments regarding features of the fourth edition of this book, the following changes have been made in this edition: a new chapter has been added that contains a large number of parasite medical case histories (case history, study questions, correct answer and discussion, and illustrative material); some of the life cycles have been redrawn, and new life cycles have been added; algorithms have been expanded; new tables and figures have been added throughout the book; additional drawings and photographs have been added; extensive updated text information is included, all of which was taken from a comprehensive literature review of all aspects of diagnostic medical parasitology; additional examples of unusual parasitic infections are included; the chapter on arthropods has been expanded and includes additional photographs and drawings and expanded text; the chapter on the immunology of parasitic infections has been enlarged, and updated information on both antigen and antibody detection methods continues to be included in this edition; the chapter on histologic identification of parasites has been greatly expanded with diagrams of various parasites and their visual presentations in tissue sections along with greatly enhanced legends for all images; diagnostic methods using newer immunoassay and “dipstick” technology are described; and the chapter on quality control has been expanded to include information on instrumentation and equipment, safety regulations, quality control and quality systems information, continuous quality improvement, and managed care considerations. The appendixes have been expanded to contain more information on artifacts; expanded lists and photographs of products and commercial suppliers; algorithms for ordering specific tests that complement the ova and parasite examination; flowcharts for processing stool specimens; quality control recording sheets for use in the laboratory; and general references and relevant websites. One of the most important expanded areas of the fifth edition is found in appendix 8. This section contains information that has been published within months prior to the final printing of this edition. This “late breaking” synopsis of very recent publications can assist the reader in having access to the latest information available. I encourage you to review this section as you read various chapters throughout the book.

The approach to the fifth edition of the book is similar to that for the first four editions. My objective is to provide the user with clear, concise, well organized, clinically relevant, cost effective, and practical quality procedures for use in the clinical laboratory setting. To use and fully understand these methods for the parasites discussed, it is imperative that the user also understand information related to life cycle, morphology, clinical disease, pathogenesis, diagnosis, treatment, epidemiology, and prevention. My intent is to provide a comprehensive discussion of both aspects of the field of diagnostic medical parasitology: first, a comprehensive discussion of the individual parasites, and second, relevant diagnostic methods designed to detect and identify the organisms present. I believe that the book fulfills these objectives and provides readers, whether
they are laboratorians, physicians, or other health care professionals, with not only comprehensive but also very practical information.

It is also important for readers to understand that there are many diagnostic test options available to the clinical laboratory; not every laboratory will approach the diagnosis of parasitic infections in the same way. The key to quality and clinically relevant diagnostic work is a thorough understanding of the pros and cons of each option and how various options may or may not be relevant for one’s particular geographic area, laboratory size and range of expertise, client base, number and type of patients seen, personnel expertise and availability, equipment availability, educational initiatives, and communication options, just to name a few variables. However, it is also important to understand the regulations and technical recommendations that govern and guide this type of laboratory work; many of these guidelines are related to coding and reimbursement, proficiency testing, and overall clinical relevance.

The use of product names is not intended to endorse specific products or to exclude substitute products. Also, because of possible advances and changes in the therapy of parasitic infections, independent verification of drugs and drug dosages is always recommended. The diagnostic procedures are intended for laboratory use only by qualified and experienced individuals or by the personnel under their direct supervision. Every effort has been made to ensure accuracy; however, ASM Press and I encourage you to submit to us any suggestions, comments, and information on errors found.
This page intentionally left blank
I would like to express my thanks to the many colleagues and students who have helped shape my perspective regarding the field of medical parasitology over the years, especially Yost Amrein, Bruce Anderson, Michael Arrowood, Lawrence Ash, Gordon Ball, Ralph Barr, Marilyn Bartlett, Kenneth Borchardt, Peter Boreham, Emilio Bouza, Thomas Brewer, Sandra Bullock-Iacullo, Ann Cali, David Casemore, Francis Chan, Ray Chan, John Christie, Frank Cox, William Current, Peter Deplazes, J. P. Dubey, Mark Eberhard, Ronald Fayer, Sydney Finegold, Ana Flisser, Jacob Frenkel, Thomas Fritsche, Hector Garcia, Raj Gill, Robert Goldsmith, Thomas Hanscheid, George Healy, Barbara Herwaldt, Donald Heyneman, George Hillyer, Peter Horen, Peter Hotez, David John, Stephanie Johnston, Irving Kagan, Ray Kaplan, John Kessel, Jay Keystone, Mary Klassen-Fischer, Elmer Koneman, Jaime LaBarca, William Lewis, Andrea Linscott, Earl Long, Alex Macias, Edward Markell, Marilyn Marshall, Mae Melvin, Michael Miller, Anthony Moody, William Murray, Ronald Neafie, Ron Neimeister, Ann Nelson, Susan Novak, Thomas Nutman, Thomas Orihel, Ynes Ortega, Robert Owen, Josephine Palmer, Graeme Paltridge, William Petri, Kathy Powers, Paul Prociv, Gary Procop, Fred Rachford, Sharon Reed, William Rogers, Jon Rosenblatt, Norbert Ryan, Peter Schantz, James Seidel, Nicholas Serafy, Irwin Sherman, Robyn Shimizu, James Smith, Rosemary Soave, Deborah Stenzel, Charles Sterling, Alex Sulzer, Sam Telford, R. C. A. Thompson, Peter Traynor, Jerrold Turner, Govinda Visvesvara, Marietta Voge, Susanne Wahlquist, Kenneth Walls, Rainer Weber, Wilfred Weinstein, John Williams, John Wilson, Marianna Wilson, Martin Wolfe, Lihua Xiao, Charles and Wiladene Zierdt, and many others I may have forgotten to mention specifically. If the information contained in this edition provides help to those in the field of microbiology, I will have succeeded in passing on this composite knowledge to the next generation of students and teachers.

Special thanks go to Graeme Paltridge, who reviewed the third edition and offered suggestions for improvements for subsequent editions, and to Sharon Belkin for her additional illustrations for this edition. I also thank Ronald Neafie from the Armed Forces Institute of Pathology for providing many photographs to illustrate several areas of the book, particularly the information on histological identification of parasites, and Herman Zaiman for providing slides that he has prepared and/or edited from many contributors worldwide.